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Abstract.

Background: Cerebral atrophy is a common feature of several neurodegenerative disorders, including Alzheimer’s disease
(AD). In AD, brain atrophy is associated with loss of gyri and sulci in the temporal and parietal lobes, and in parts of the
frontal cortex and cingulate gyrus.

Objective: The ASCOMALVA trial has assessed, in addition to neuropsychological analysis, whether the addition of the
cholinergic precursor choline alphoscerate to treatment with donepezil has an effect on brain volume loss in patients affected
by AD associated with cerebrovascular injury.

Methods: 56 participants to the randomized, placebo-controlled, double-blind ASCOMALVA trial were assigned to
donepezil + placebo (D +P) or donepezil + choline alphoscerate (D + CA) treatments and underwent brain magnetic reso-
nance imaging and neuropsychological tests every year for 4 years. An interim analysis of 3-year MRI data was performed
by voxel morphometry techniques.

Results: The D +P group (n=27) developed atrophy of the gray and white matter with concomitant increase in ventricular
space volume. In the D+ CA group (n=29) the gray matter atrophy was less pronounced compared to the D + P group in
frontal and temporal lobes, hippocampus, and amygdala. These morphological data are consistent with the results of the
neuropsychological tests.

Conclusion: Our findings indicate that the addition of choline alphoscerate to standard treatment with the cholinesterase
inhibitor donepezil counters to some extent the loss in volume occurring in some brain areas of AD patients. The observation
of parallel less pronounced decrease in cognitive and functional tests in patients with the same treatment suggests that the
morphological changes observed may have functional relevance.

Keywords: Alzheimer’s disease, association, brain‘atrophy, cerebrovascular injury, choline alphoscerate, donepezil

INTRODUCTION is generally widespread: involvement is more severe

in the temporal lobes of the hippocampus. Some stud-

More than one hundred years have passed
since the first pathophysiological characteristics of
Alzheimer’s disease (AD) [1]. In AD, brain atrophy

*Correspondence to: Francesco Amenta, Centro Ricerche
Cliniche, Telemedicina e Telefarmacia, Scuola di Scienze del Far-
maco e dei Prodotti della Salute, Via Madonna delle Carceri 9B,
62032 Camerino, Italy. E-mail: francesco.amenta@unicam.it.

ies highlight a significant correlation between the
severity of dementia and the degree of atrophy of
the temporal lobe measured by magnetic resonance
imaging (MRI) [2]. Microscopic analyses of brains of
patients affected by AD have revealed neuronal loss
(considered the main cause of the cognitive deficits)
and regressive phenomena affecting residual neurons,
characterized by unique traits: filamentous structures
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(AD neurofibrillar degeneration), ovoid inclusions
(granulo-vacuolar degeneration) and increase in the
density of senile plaques [3, 4].

The cholinergic hypothesis was the first attempt
to explain the pathophysiology of AD from a molec-
ular point of view. It was formulated more than 30
years ago as a primary degenerative process affect-
ing primarily groups of cholinergic neurons in the
hippocampus, the frontal cortex, the amygdala, the
basal nucleus, and the medial septum, regions and
structures with a relevant role in attention, learning,
and memory processes [5]. This selective alteration
determines a reduction in the expression of cholin-
ergic markers, such as choline acetyltransferase and
acetylcholinesterase, which is associated with the
onset of cognitive impairment [6]. The decrease
in cholinergic markers is proportional to the den-
sity of neurofibrillary changes and the severity of
the disease. Non-selective muscarinic antagonists,
such as scopolamine, which decreases cognitive
functions, promote the production of amyloid-3 pep-
tide and decrease the activity of a-secretase [7].
Some triterpene saponins reduce amnesia induced
by scopolamine [8, 9] and non-selective and selec-
tive muscarinic agonists have been shown to improve
learning and memory [10]. The exact molecular
mechanisms that mediate the effect of cholinergic
drugs in learning and memory and their viability in
clinical treatment are still under study [11, 12]. A
decreased number and density of nicotinic receptors
in patients with AD (mainly o432 subtype), reduced
expression of a3, a4, and o7 subunits in the cor-
tex and in the hippocampus, and in binding capacity
of a7 and a4 hippocampal cortical receptors were
documented as well [13-15].

In AD, damaged cholinergic signaling has been
reported [16]. Acetylcholine and its receptors, in
particular («7), are considered neuroprotective as
they modulate neuronal excitability mediated by
glutamate [17, 18]. Abnormalities in glutamatergic
neurotransmission in AD are initially observed in
the entorhinal cortex, followed by an involvement of
hippocampus, amygdala, frontal cortex and parietal
cortex [19].

The cholinergic hypothesis was the basis for
the first treatment strategies and approaches to
drug development (acetylcholinesterase inhibitors,
cholinergic precursors, cholinergic receptor agonists,
cholinergic allosteric enhancers) for AD. It was
hypothesized that the observed relationship between
cognitive dysfunction and reduced cholinergic trans-
mission in the brain plays an important role in AD,

but does not in itself determine the ultimate cause of
the disease [20, 21].

Diagnostic techniques, such as positron emission
tomography (PET) and MRI, are increasingly used
[22] in clinical practice to have more objective and
uniform parameters to measure. With MRI, it is pos-
sible to detect the disease even in the initial stages and
to distinguish mild forms from more severe forms of
the disease by assessing the level of cerebral atrophy.
AD diagnosis is primarily based on clinical criteria
[23, 24], although biomarkers enhance the accuracy
of diagnosis and their use is becoming a standard in
the evaluation of dementia [25-28].

Starting from the so-called cholinergic hypothesis
of geriatric memory dysfunction, various pharma-
cological approaches were proposed in attempts to
correct the cholinergic deficit observed in the cen-
tral nervous system of patients affected by vascular
dementia and AD [29-31]. Cholinesterase inhibitors
(ChE-I) (in particular donepezil, galantamine, and
rivastigmine), initially proposed mainly for treat-
ing the cognitive symptoms of AD, are nowadays
actively studied for other adult-onset cognitive dys-
function disorders, including vascular dementia [29,
31, 32]. The three above drugs exert modest, but
positive effects on the cognitive dysfunctions and
behavioral disorders typical of adult-onset dementia
disorders. The precursor loading strategy proposed
in parallel with the development of the geriatric
cholinergic dysfunction hypothesis provided incon-
sistent results in clinical trials and was therefore left
early. A subsequent analysis of choline-containing
phospholipids acting as acetylcholine precursors has
shown that the ineffectiveness reported primarily
for the cholinergic precursor phosphatidylcholine
(lecithin) is not shared by all the compounds of
this class. CDP-choline and choline alphoscerate (L-
alpha-glycerylphosphorylcholine, GFC) have proved
to exert some effects on cognitive functions in adult-
onset dementia disorders [33, 34]. On the other hand,
choline alphoscerate has shown a higher activity com-
pared to other cholinergic precursors of the same class
[34].

Based on the above considerations, a clinical study
(Association between the cholinesterase inhibitor
donepezil and the cholinergic precursor choline
alphoscerate in Alzheimer’s disease, ASCOMALVA)
was designed to assess whether the combination of a
cholinergic precursor with ChE-I, which has proved
to be effective in preclinical studies [35, 36], may
be a therapeutic option for enhancing the effect of
cholinergic therapies in AD patients with concomi-
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tant ischemic cerebrovascular disease. The Interim
results of the ASCOMALVA trial after the first and
second year of treatment were published [37, 38]. The
present study summarizes the results of the ASCO-
MALVA trial after 3 years of observation, including
brain morphometric data. Quantitative brain volume
analysis is an extension versus the previous interim
results of ASCOMALVA which were limited to neu-
ropsychological analyses.

METHODS
The trial

ASCOMALVA is a multicenter, randomized,
placebo-controlled, double-blind clinical trial that
was designed spontaneously by the investigators.
Characteristics of the trial, centers involved and their
role are reported elsewhere [37, 38].

Initially, the protocol plan was to treat patients
either with donepezil + choline alphoscerate (treat-
ment group D + CA) or donepezil + placebo (control
group D +P) for 24 months. Based on the encour-
aging results obtained from an interim analysis, an
amendment to the protocol was proposed and autho-
rization to prolong the study for another two years was
obtained. Therefore, ASCOMALVA has observed
enrolled patients for 4 years. By maintaining the
double-blind, the protocol enabled the coordinating
center to evaluate the course of the parameters, which
were analyzed via the web after 3, 6, 9, 12, 18, 24,
30, 36, 42, and 48 months of treatment. Intermediate
evaluation, without breaking the blind, was possi-
ble because all study data, excluding patient identity,
were available on a web platform managed by the
coordinating center. Only the coordinator knew. the
type of treatment (active or control) assigned to‘indi-
vidual patients.

The trial recruited AD patients with concurrent
cerebrovascular damage. These patients represent a
population with major cholinergic hypofunction [39,
40], who can benefit from “reinforced” (biosynthe-
sis precursor, e.g., choline alphoscerate +degradation
inhibitor, e.g. donepezil) cholinergic therapy. Diag-
nosis of AD disease was established according to
NINCDS-ADRDA criteria [41]. Vascular damage
was evaluated using the new scale of assessment
for White-Age-Related Matter Changes (ARWMC)
based on the identification of cerebral ischemic dam-
age with computed tomography and/or magnetic
resonance of the brain. Patients showed compara-
ble scores in the scale with no significant differences

between groups at baseline nor at controls made every
year. Inclusion and exclusion criteria are reported
elsewhere [37, 38].

Three years of treatment were achieved in 113
patients (67 females and 46 males). These individuals
underwent follow-up visits at 3, 6, 9, 12, 18, 24, 30,
and 36 months. During each follow-up visit, patients
were examined and the tests listed below were per-
formed [37, 38]: Mini-Mental State Examination
(MMSE) and AD Cognitive Scale subscale (ADAS-
cog); the Basic Activities of Daily Life (BADL) and
instrumental Activities of Daily Living (IADL); and
the Neuropsychiatric Inventory frequency x severity
(NPI-F) and caregiver stress (NPI-D).

Statistical analysis of the differences between the
scores related to the various parameters investi-
gated in the two groups of patients (D +CA versus
D +P) was performed by the analysis of variance
(ANOVA). Significance of the differences between
the two groups was assessed by the two-tailed Stu-
dent’s “t” test, with Bonferroni correction for multiple
analysis.

MRI analysis

The patients participating in the study were
required to carry out MRI analyzes at the hospital
clinics or at centers affiliated to the national health
service. This was for budgetary reasons due to the
spontaneous generation type of the study. As a con-
sequence of it, patients may have MRIs made with
different machines or not at the same resolution.
Patients who had no comparable MRI tests were
discarded. After this analysis, 56 patients of which
27 treated with D+P and 29 treated with D+ CA
remained. Further details are shown in the flowchart
of the trial (Fig. 1).

Target brain areas were selected prior of the evalu-
ation, according to the literature [42—48], among the
brain areas most affected by atrophy in AD.

MRI processing

The routine brain MRI protocol included axial
(TIWI and T2WI), coronal PDWI, and sagittal
TIWI 3D TI1 sequence was performed with slice
thickness 0.5mm. The brain images were trans-
ferred to a personal computer workstation using
Slicer 4.4.0. software, which is a multiplatform,
free open source software package for visualization
and medical image computing developed by Har-
vard University and approved for medical research
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441 patients screensd
231 excluded
207 did not meetinclusion
g criteria
21 withdraw consent
3 other
210 randomized
106 allocated toDonzpezl + choline 104 allocatzd toDonepeal + placebo
alphoscarats
l Y
57 complatd Completed 3th 56 complated
vear oftherapy
, !
29 MRI compatible 27

Patient withdrawals at three years of treatment

Causes of No. Donepezil +placebo
withdrawal

Total 20

Death 2

Lack of efficacy 1

Non 6 Transferred togeriatrichomecare support
compliance
Lack of 3 : | Hallucinations, asthenia
tolerability

2 Diarrhea, vomiting
Other reasons 8 6 Problemsinreaching the

hospital
2 Unknown

No. Donepezil + cholinealphoscerate
21
1
3 Worsening of the Cisease
5 Transferred togeriatrichomecare support
3 1 Hallucinations, insomnia
;| Diarrhea, vomiting
1 Cutaneous rash
9 3 Problemsinreaching the hospital
Home/city change
Unknown

Fig. 1. Flowchart of the study.

(http://www.slicer.org/). It provides reliable mor-
phometry of structures of interest by manual and
semiautomated tracing.

3D T1-weighted images, axial and sagittal, were
used for volumetric analysis. The volume of each
region of interest was automatically calculated by
summing the trace area of each slice multiplied by
the slice thickness. The volumes were measured after

tracing both the right and left sides. Brain regions
of interest were delineated by drawing them using
a semi-automated tool in the slices where structures
were visible. The traced volumes of each region of
interest were recorded in mm3, but were expressed
as a percentage variation of the traced volume out
of the same traced volume at baseline to minimize
interpersonal and gender-related variability.
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Data analysis

Data obtained via the volume analysis were trans-
ferred into a Microsoft Excel database and then
divided according to the patients’ treatment scheme
and the parameter changes were evaluated over time.
Data were then analyzed statistically using analysis
of variance (ANOVA) for comparisons between treat-
ments. Student’s t-test for paired data was used to
assess statistical significance of differences between
groups. Comparison of data obtained at recruitment
and at the various visits was made using the corre-
lation coefficient of Pearson and the specific data
analysis program Origin 9.1 (OriginLab Corpora-
tion). Average brain volumes of subjects of the two
groups investigated (D + P versus D + CA) were com-
pared by one-way analysis of variance (ANOVA),
setting p < 0.05 as the cutoff level of significance, with
Bonferroni correction for multiple analysis.

MMSE
2
1
o
-1
-2
-3
-4
-5
-6
-7
8 *
Baseline 3months 6months 9months 12months 18 months 24 months 30months 36 months
A ~&—Donepezil =@ Donepezil+Choline alphoscerate
BADL
0
-05
-1
-15
-2
25
-3
Baseline 3months 6months 9 months 12months 18 months 24 months 30 months 36 months
C ~&—Donepezil =@ Donepezil+Choline alphoscerate
NPI FxS
20
15 % *
10
5
0
: T 4w
-10
Baseline 3 months 6months 9 months 12months 18 months 24 months 30 months 36 months

~#-Donepezil =@ Donepezil+Choline alphoscerate

RESULTS

Twenty patients assigned to D+P (17.7%) and
twenty-one patients (18.6%) assigned to D+CA
withdrew from the study. Tolerability of treatment
was similar in the two groups of patients. The reasons
for withdrawal are summarized in Fig. 1.

Neuropsychological analysis

Cognitive assessment, showed a significant differ-
ence between the two experimental groups (D + CA
and D +P). Specifically, the subjects of the D+P
group showed a significant worsening of the global
cognitive functions measured through the MMSE
(Fig. 2A) and the ADAS-cog (Fig. 2B) compared to
the group D + CA, from the 24th month of observation
up to three years of treatment.

ADAS-Cog

12 mog\s 18months ~ 24months ~ 30months  36months

Baseline 6 months

—#—Donepezil  —#—Donepezil+Choline alphoscerate

IADL

Baseline 3 months 6months 9 months 12months 18 months 24 months 30 months 36 months

@ Donepezil  —#— Donepezil+Choline alphoscerate

NPI Distress

Baseline 3 months 6months 9months 12months 18 months 24 months 30 months 36 months

=@ Donepezil == Donepezil+Choline alphoscerate

Fig. 2. Evaluation of cognitive (MMSE, A; ADAS-cog, B), functional (BADL, C; IADL, D) and behavioral (NPI-F, E; NPI-D, F) tests during
the ASCOMALVA study. Data are means = S.E.M. *p <0.05 versus baseline; #p <0.05 Donepezil + Placebo versus Donepezil + choline

alphoscerate.
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Table 1
Demographics of patients recruited for the trial ASCOMALVA analyzed for MRI volumes

Donepezil Donepezil + Choline alphoscerate

Sex (M/F) S15 (54%)/212 (46%) J'11 (38%)/918 (62%)

Age (y) 74+6 74+6

Education (y) T+5 T+2

MMSE at baseline 20.8+4.0 19.8+2.8

ADAS-Cog at baseline 245+7.3 28.0+6.7

BADL at baseline 47+1.6 5.5+£0.8

TIADL at baseline 32+1.7 37+£18

NPI FxS at baseline 19.54+20.9 21.3+18.6

NPI Distress at baseline 7.6+7.6 10.0+8.9

Gray matter volume at baseline (mm?) 673 £142 602 £ 139

White matter volume at baseline (mm?) 374 £ 130 387+ 115

CSF matter volume at baseline (mm?) 199 +£53 230450
Functional assessment resulted in a significant Gray matter

difference between the two groups. Specifically,
the D+P group showed a significant worsening of
the BADL (Fig. 2C) and IADL (Fig. 2D) scores,
respectively, from 18th month and 30th month of
observation up to three years of treatment, compared
to the D + CA group.

The results of the behavioral assessment on the NPI
scale showed a significant decrease in the severity
(NPI-F, Fig. 2E) and the caregiver distress (NPI-D,
Fig. 2F), in patients treated with D + CA compared to
D + P, from the 24th month of observation up to three
years of treatment.

MRI analysis

Baseline demographic data of the patients and MRI
volumes at baseline is reported in Table 1.

Figure 3 shows segmentation of the cerebral areas
obtained by the MRI analysis. This analysis enabled
extrapolation of the volumes of the gray matter, white
matter, and cerebrospinal fluid (CSF).

Patients in the D +P group showed a statistically
significant reduction in gray matter from baseline
in the second and third years of treatment. D+ CA
treatment resulted in a significant difference from
baseline only in the third year of treatment. Dif-
ferences between the two groups were statistically
significant during the first two years of treatment
(Fig. 3A).

The decrease in the volume of the white matter
was compared versus baseline over the three years
of treatment in the D +P group and in the last two
years in the group treated with D + CA. No statisti-
cally significant differences were noticeable between
the two study groups (Fig. 3B). The reduction of the
volumes of grey and white matter were compensated
by asignificant increase in CSF volume from baseline

-10

-15

-20
-25

-30
baseline 1year 2year 3year

A =4 Donepezil =i~ Donepezil+choline alphoscerate

White matter

-40
-45
-50 *
baseline 1year 2 year 3year
B —4— Donepezil =i Donepezil+choline alphoscerate
CSF
60
50 -+
40
30
20
10 -
(]
-10
baseline 1year 2year 3year
C =4 Donepezil -~ Donepezil+choline alphoscerate

Fig. 3. Changes in the percentage of gray and white matter,
and CSF volumes in the two groups of patients over the three
years of observation. The data are means of the percentage varia-
tion £ S.E.M. *p < 0.05 versus baseline; *p < 0.05 versus donepezil
and placebo.
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L-Hippocampus R-Hippocampus
10
20
15 - 5 -
10 0
5 +
0 - 5
- 10 |
-10 s
-15 ¢
20 - 20 *
25 - 25 %
-30 i 30
baseline 1year 2 year 3year baseline 1year 2 year 3year
A == Donepezil =i—Donepezil+choline alphoscerate B Donepezil SR
L-amygdala R-Amygdala
10 0
] -5
0 | 1
59 -10 ¢
210 -
-15 -15
-20 20 4
-25 !
-30 % 25 + % %
35 % 0
baseline 1year 2 year 3year baseline 1year 2 year 3year
c ~—Donepezil ~- Donepezil+choline alphoscerate D 4 Donepezil ~{li—Donepezil+choline alphoscerate

Fig. 4. Changes in the percentage of the volume of left (L) and right (R) hippocampus and amygdala in the two groups of patients over the
three years of observation. The data are means of the percentage variation = S.E.M. *p<0.05 versus baseline; #p <0.05 versus donepezil

plus placebo.

L-Caudate Nucleus R-Caudate nucleus

0 1 i - # " # #
H 0 - =
-10 #
-10
-20
-20
-30
-30
-40 * *
50 * -40 "
-50
-60 -
baseline 1year 2year 3year baseline 1year 2year 3year
A ~—4—Donepezil ~#i—Donepezil+choline alphoscerate B —+—Donepezil ~— Donepezil+choline alphoscerate
L-Putamen R-Putamen
2 10 | #
0 | .
10 [
| *H
o # % -10 |
10 - -20 |
-20 - -30 |
-30 -40 |
“0 £ ' 50 1 % i
50 * 60 |
C baseline 1year 2year 3year baseline 1year 2year 3year
—4—Donepezil ~{fi—Donepezil+choline alphoscerate D =4 Donepezil =ii—Donepezil+choline alphoscerate

Fig. 5. Changes in the parahippocampal gyrus, superior and middle frontal gyri, and globus pallidus in the two groups of patients along
the three years of observation. The data are the means of the percentage variation = S.E.M. *p <0.05 versus baseline; *p <0.05 versus

monotherapy with donepezil alone.
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Parahippocampal gyrus
10

5 # #
0 i
-10 -
-15 1
-20 e
-25
-30 % %
-35 *
-40
baseline 1year 2year 3year
A == Donepezil == Donepezil+choline alphoscerate
s Middle frontal gyrus
0 4
-5
-10
-15
-20
25 +
-30 -
-35 -
40 |
-45
baseline 1year 2year 3year
C —&— Donepezil —i— Donepezil+choline alphoscerate

Superior frontal gyrus

baseline 1year 2 year 3year
B =4 Donepezil - Donepezil+choline alphoscerate
s Globus pallidus
0
-5
-10
-15
-20
-25
-30
-35
-40
-45
baseline 1year 2 year 3year
D - Donepezil ~-Donepezil+choline alphoscerate

Fig. 6. Changes in the percentage of the volume of left (L) and right (R) caudate nucleus and putamen in the two groups of patients along the
three years of observation. The data are the means of the percentage variation + S.E.M. *p <0.05 versus baseline; *p < 0.05 versus donepezil

plus placebo.

in the second and third year of treatment in patients
receiving D + P and in the third year of treatment in
patients receiving D+ CA. The difference between
groups became significant after the third year of treat-
ment (Fig. 3C).

Figure 4 shows the results of volume analysis of
hippocampus and amygdala grey matter. A progres-
sive reduction in the volume of the hippocampus was
noticeable along the course of the study (Fig. 4A, B):
This reduction was more pronounced in the D+P
group than in the D+ CA group. The difference
between the two groups was significant for the right
hippocampus throughout the three years of treatment
(Fig. 4B), whereas this significance was recorded
after the second and third year of treatment for the
left hippocampus (Fig. 4A). Similar right-left differ-
ences not statistically significant were found between
the two groups for the amygdala (Fig. 4C, D).

Morphometric analysis was also extended to
parahippocampal gyrus, basal ganglia (caudate
nucleus, putamen, globus pallidus), and frontal cor-
tex (superior and middle frontal gyri). The trend of
cerebral atrophy was similar as described above for
the limbic areas considered. In the parahippocampal
area, atrophy was less pronounced in the first and sec-

ondyear of treatment (Fig. SA). In the superior frontal
gyrus, differences were significant between the two
treatment groups over the three years of treatment
(Fig. 5B), whereas in the middle frontal convolution,
differences were statistically significant during the
first two years of treatment (Fig. 5C).

A gradual reduction of the volume of the caudate
nucleus, more pronounced in the D+P group was
also observed (Fig. 6A, B). Analysis of the volume
of the putamen revealed progressive atrophy, with
a slower rate in the D+ CA group of patients. This
reduction was statistically significant in the left puta-
men after two years of treatment (Fig. 6C) and in
the right putamen starting from 2 years of treatment
(Fig. 6D).

Volume analysis of the globus pallidus revealed
a similar trend, with progressive atrophy during the
three years of treatment, which was less pronounced
in patients treated with D+ CA (Fig. 5D). Analysis
of the superior and middle frontal gyri revealed in
the first of the two frontal cortex areas statistically
significant differences between the 2 patient groups
over the three years of treatment (Fig. 5B). In the
middle frontal gyrus, the difference was statistically
significantin the first two years of treatment (Fig. 5C).

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375



E. Traini et al. / Volume Analysis of Brain Cognitive Areas in AD 9

Table 2
Evaluation of the correlation between neuropsychological tests and brain volume changes
Gray matter White matter CSF

MMSE Pearson’s Correlation 0.70161 0.68361 -0.25271

p value 3,75255E-14* 6.95737E-11* 0.0182*
ADAS-Cog Pearson’s Correlation -0.5669 -0.56005 0.26828

p value 1.03909E-8* 4.62971E-7* 0.01199%*
BADL Pearson’s Correlation 0.43894 0.56049 -0.19965

p value 2.11079E-5* 4.51634E-7* 0.06374
IADL Pearson’s Correlation 0.3533 0.36629 -0.27626

p value 7.89015E-4* 0.00182%* 0.0096*
NPI FxS Pearson’s Correlation 0.00397 -0.15627 -0.15072

p value 0.9709 0.1964 0.16347
NPI Distress Pearson’s Correlation -0.07052 -0.10924 0.0048

p value 0.51631 0.36801 0.96484
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41

Correlation between brain area volumes and neu-
ropsychological tests were evaluated and detailed in
Table 2.

DISCUSSION

The study of changes in the human brain through
neuroimaging techniques has undergone great devel-
opment. In particular the study of mesial temporal
atrophy, focusing on the hippocampus, a key structure
in the development of AD, has proved to be a sen-
sitive and suitable to confirm the presence of AD. It
has been demonstrated that the hippocampus exhibits
degeneration even before the onset of symptoms and
is the first region to degenerate followed by other
brain areas at later stages. Construction of morpho-
logical models of the hippocampus is a starting point
of fundamental importance in the identification of the
tools that enable early diagnosis of the disease [49].

ChE-I are the drugs most widely used to improve
cholinergic neurotransmission in patients with AD.
Some studies have suggested that ChE-I exerts neu-
roprotective effects, which could slow down the
progression of the disease [50], although the bene-
fits and costs/benefits of acetylcholinesterase/ChE-I
are modest and, according to some studies, of doubt-
ful clinical relevance [51]. One of the main problems
of ChE-I therapy is the decrease in treatment efficacy
over time [52]. Another problem is the treatment of
particular categories of patients. (very old subjects,
i.e., over 85 years old, or patients with bradycardia,
bronchial asthma, or chronic obstructive pulmonary
disease) in which ChE-Is are not indicated [53]. The
use of ChE-I at higher doses is also potentially asso-
ciated with major side effects. Consequently, patients
have to be selected carefully and then monitored.

Cholinergic precursors were among the first com-
pounds used for treating AD, but their activity

was modest if any in clinical trials [30]. Choline
alphoscerate is, among the clinically tested cholin-
ergic precursors, the compound that has probably
shown the greatest efficacy, as well as good tolerabil-
ity in patients with mild to moderate AD and vascular
dementia [53]. Since it crosses the blood-brain bar-
rier easily, it probably acts as a metabolically active
choline donor in the brain and has proved to exert
neuroprotective effects in experimental animals with
vascular cerebral lesions.

The cholinergic basal structures of the forebrain
involved in cognitive activities are particularly sensi-
tive to ischemia. This observation could explain the
marked cholinergic deficits reported in the vascu-
lar neurodegenerative forms of dementia [54]. Based
on these considerations, ASCOMALVA recruited
patients with AD associated with vascular injury, i.e.,
a patient population characterized by marked cholin-
ergic hypofunction [39, 40], who could benefit from a
strong cholinergic support given by the combination
of high doses of Choline alphoscerate with 10 mg
of Donepezil a day (D+ CA). Neuropsychological
testing revealed a statistically significant advantage
in patients treated with D+ CA versus D+P. The
efficacy of D+ CA was greater mainly on cognitive
and behavioral symptoms, with a significant reduc-
tion in caregiver stress starting from the first year.
With regard to daily functional activities, the differ-
ence became significant after two years of treatment.
Advantages with D+ CA were noticeable primarily
after long-term (two years) treatment, suggesting that
some time is needed to detect the activity of choline
alphoscerate.

AD is characterized by a decrease in the weight
and volume of the brain, due to cortical atrophy,
with enlargement of the grooves and correspond-
ing flattening of the convolutions. Cerebral atrophy
involving primarily the hippocampus is related to
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the progression of cognitive impairment and to con-
version from mild cognitive impairment to overt
AD [42, 43]. Hippocampal volume is one of the
main biomarkers of AD and the morphometric anal-
ysis of this parameter based on MRI is one of the
most used systems to assess the progression of AD
[44]. Amygdala atrophy has previously been iden-
tified in other neurodegenerative disorders, such as
frontotemporal dementia, Lewy body dementia, and
vascular dementia [45, 46], as it plays a funda-
mental role in the enhancement of explicit memory
for both pleasant and unpleasant emotional stimuli,
modulating codification and consolidation processes
[47, 48].

In MRI, water, the main component of the CSF,
is darker than cellular matter and thus easily recog-
nizable. Measures of the various shades of gray of
the hippocampus and surrounding areas enable esti-
mation of the degree of atrophy. In several studies,
hippocampal atrophy was assessed by manual analy-
sis of MR images. Manual analysis of hippocampal
atrophy is time consuming and has the potential bias
deriving from subjective analysis [49]. It is there-
fore preferable to use automated systems performing
analysis of MRI images regardless of the presence
or absence of the disease. MRI studies have shown
significant hippocampal atrophy in patients with AD,
with a 30-40% reduction compared to controls. The
MRI examination enables detailed visualization of
the hippocampus and after the acquisition of a high-
resolution 3D MRI sequence of the human brain,
images can be processed using specific algorithms
and then processed according to validated protocols
[44, 55-57].

The analysis of the data referring to the patients of
the ASCOMALVA study revealed predictable cere-
bral atrophy involving primarily the hippocampus
and amygdala, in all patients with compensatory
increase in CSF volume. The rate of progression
of the atrophy was significantly higher in the group
receiving only donepezil. The reduction of atrophy in
the hippocampal and amygdaloid areas is consistent
with the clinical efficacy shown in terms of reduc-
tion in cognitive loss (MMSE and ADAS-Cog scores)
and in the improvement in behavioral parameters,
as well as with improvement in caregiver percep-
tions (NPI). Correlation study shows that cognitive
and functional tests are strongly related to gray and
white matter atrophy, with a weaker (but significant)
relation to CSF volume increase. No significant rela-
tionship was found between behavioral tests and brain
volume changes.

The less pronounced hippocampal and amyg-
daloid atrophy occurring in patients receiving choline
alphoscerate in addition to standard donepezil treat-
ment suggests that the marked cholinergic challenge
induced by the ChE-I + cholinergic precursor treat-
ment may slow-down the progression of brain
atrophy typical of AD. Our findings confirmed the
slower atrophic progression involving frontal con-
volutions and the slower worsening of behavioral
performances, especially in terms of apathy, which
had been previously observed in the patients of the
study [58, 59].

A limitation of this study is the global cognitive
and behavior assessment. This limitation should be
addressed in a future study with the evaluation of
ADAS-cog subtests scores and NPI subtest scores,
in a larger sample group. The sample size of the
present study is rather small and therefore the results
obtained should be interpreted with caution and hope-
fully replicated and confirmed in future independent
studies.

The results of our study are related to a population
of patients with AD associated with vascular damage,
which represents, in absolute terms, the largest pro-
portion-of subjects with dementia, as demonstrated
by pathological [60], epidemiological [61], and ret-
rospective studies [62]. Patients with vascular lesions
should be carefully monitored, because they are the
most likely to undergo rapid disease progression [63].

Based on our finding we can suggest that cog-
nitive impairment associated with cerebrovascular
involvement may be more effectively countered, sim-
ilarly as shown in preclinical studies, by combining a
cholinergic precursor as choline alphoscerate to stan-
dard treatment with ChE-I. These two treatments in
combination seem to exert synergistic effects and,
consequently, could represent a therapeutic option to
be considered in AD associated with cerebrovascular
damage.
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